e^y对x的导数怎么求
1个回答
展开全部
设y=y(x),求e^y对x的导数:
d(e^y)/dx = d(e^y)/dy × dy/dx
= e^y × y‘
= y' e^y
如果给出y的具体表达式,若 y(x)=sin x
那么:
d(e^y)/dx = cos x e^(sin x)
扩展资料
常用导数公式:
1、y=c(c为常数) y'=0
2、y=x^n y'=nx^(n-1)
3、y=a^x y'=a^xlna,y=e^x y'=e^x
4、y=logax y'=logae/x,y=lnx y'=1/x
5、y=sinx y'=cosx
6、y=cosx y'=-sinx
7、y=tanx y'=1/cos^2x
8、y=cotx y'=-1/sin^2x
9、y=arcsinx y'=1/√1-x^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询