在三角形ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2a+b)sinC
在三角形ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC(1)求A的大小我在其他地方看到这样的解.2asinA=...
在三角形ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC
(1) 求A的大小
我在其他地方看到这样的解
. 2asinA=(2b+c)sinB+(2c+b)sinC 正弦定理2a^2=2b^2+bc+2c^2+bca^2=b^2+c^2+bccosA=(b^2+c^2-a^2)/2bc=-1/2 A=120°
我不知道 正弦定理2a^2=2b^2+bc+2c^2+bca^2 里面的bca^2 ,a^2是怎么来的? 展开
(1) 求A的大小
我在其他地方看到这样的解
. 2asinA=(2b+c)sinB+(2c+b)sinC 正弦定理2a^2=2b^2+bc+2c^2+bca^2=b^2+c^2+bccosA=(b^2+c^2-a^2)/2bc=-1/2 A=120°
我不知道 正弦定理2a^2=2b^2+bc+2c^2+bca^2 里面的bca^2 ,a^2是怎么来的? 展开
展开全部
1. 2asinA=(2b+c)sinB+(2c+b)sinC 正弦定理2a^2=2b^2+bc+2c^2+bca^2=b^2+c^2+bccosA=(b^2+c^2-a^2)/2bc=-1/2 A=120°2. A=120° B=60°-C sinB+sinC=sin(60°-C)+sinC=√3/2cosC-1/2sinC+sinC=√3/2cosC+1/2sinC=sin(C+60°),因为0°<C<60°,所以60°<C+60°<120°,所以√3/2<sin(C+60°)<=1,∴sinB+sinC的取值范围是(√3/2,1].sinB+sinC的最大值是1(当C=30°时取到).
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询