(tanx-sinx)/[(sinx)^3]的极限是?x趋于0
展开全部
这道题没那么复杂。 我来个简单解法:
sinx~x所以, (sinx)^2~x^2, tanx= sinx/cosx
就有(tanx-sinx)/[(sinx)^3]=(sinx/cosx-sinx)/[(sinx)^3]=(1/cosx-1)/[(sinx)^2]=(1-cosx)/(x^2cosx)
而x趋于0 cosx=1所以原式等于(1-cosx)/x^2
利用1-cosx~1/2x^2
所以结果为1/2
sinx~x所以, (sinx)^2~x^2, tanx= sinx/cosx
就有(tanx-sinx)/[(sinx)^3]=(sinx/cosx-sinx)/[(sinx)^3]=(1/cosx-1)/[(sinx)^2]=(1-cosx)/(x^2cosx)
而x趋于0 cosx=1所以原式等于(1-cosx)/x^2
利用1-cosx~1/2x^2
所以结果为1/2
追问
那1-cosx不是等于0了???
追答
你理解错了。 x趋于0时, cosx=1 是消去分母, 因为它不影响原式极限。 1-cosx 作为分子是不能代入求解的, 多看下等价无穷小相关内容
来自:求助得到的回答
展开全部
方法一
解:求极限x➔0lim[(tanx-sinx)/sin³x]
=lim(1/cosx-1)/(sinx)^2
=lim(1-cosx)/(sinx)^2cosx
=lim2(sin(x/2))^2/(sinx)^2
=(1/2)lim[(sin(x/2))^2/(x/2)^2][x^2/(sinx)^2]
=1/2
方法二
求极限x➔0lim[(tanx-sinx)/sin³x]
解:x➔0lim[(tanx-sinx)/sin³x]=x➔0lim[(1/cos²x)-cosx]/(3sin²xcosx)
=x➔0lim[(1-cos³x)/(3sin²xcos³x)=x➔0lim[(3cos²xsinx)/(6sinxcos⁴x-9sin³xcos²x)]
=x➔0lim[(3cos²x)/(6cos⁴x-9sin²xcos²x)]=3/6=1/2
解:求极限x➔0lim[(tanx-sinx)/sin³x]
=lim(1/cosx-1)/(sinx)^2
=lim(1-cosx)/(sinx)^2cosx
=lim2(sin(x/2))^2/(sinx)^2
=(1/2)lim[(sin(x/2))^2/(x/2)^2][x^2/(sinx)^2]
=1/2
方法二
求极限x➔0lim[(tanx-sinx)/sin³x]
解:x➔0lim[(tanx-sinx)/sin³x]=x➔0lim[(1/cos²x)-cosx]/(3sin²xcosx)
=x➔0lim[(1-cos³x)/(3sin²xcos³x)=x➔0lim[(3cos²xsinx)/(6sinxcos⁴x-9sin³xcos²x)]
=x➔0lim[(3cos²x)/(6cos⁴x-9sin²xcos²x)]=3/6=1/2
追问
方法1
lim(1-cosx)/(sinx)^2cosx
=lim2(sin(x/2))^2/(sinx)^2
cos x 呢?会不会啊你~~~不要只会复制
追答
lim[ (1/cosx-1)sinx]/sin^3(x)
=lim[(1-cosx)/cosx]/sin^2(x)
=lim[x^2/2cosx]/sin^2(x)
=1/2
这里用到了x~sinx 1-cosx~x^2/2
不过此题最快的的方法是提取tanx tanx-sinx=tanx(1-cosx) 利用等价无穷小量等价替换下就出来了。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-12-09
展开全部
还有方法三、四……
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询