设ω=cos(2π/5) + i×sin(2π/5),请写出以ω,ω^3,ω^7,ω^9为根的方程
1个回答
展开全部
ω=cos(2π/5) + i×sin(2π/5),
说明1,w,w^2,w^3,w^4是x^5-1的五个根
所以w^5=1,且(x-1)(x-w)(x-w^3)(x-w^2)(x-w^4)=x^5-1
=(x-1)(x4-x3+x2-x+1)
所以 (x-w)(x-w^3)(x-w^2)(x-w^4)
=(x^5-1)/(x-1)
=x4-x3+x2-x+1
w^7=w^2,w^9=w^4
所以(x-w)(x-w^3)(x-w^7)(x-w^9)
=(x-w)(x-w^3)(x-w^2)(x-w^4)
=x4-x3+x2-x+1
说明1,w,w^2,w^3,w^4是x^5-1的五个根
所以w^5=1,且(x-1)(x-w)(x-w^3)(x-w^2)(x-w^4)=x^5-1
=(x-1)(x4-x3+x2-x+1)
所以 (x-w)(x-w^3)(x-w^2)(x-w^4)
=(x^5-1)/(x-1)
=x4-x3+x2-x+1
w^7=w^2,w^9=w^4
所以(x-w)(x-w^3)(x-w^7)(x-w^9)
=(x-w)(x-w^3)(x-w^2)(x-w^4)
=x4-x3+x2-x+1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询