A是n阶正交矩阵,若A的行列式为1,证明当n为奇数时,E—A的行列式为0

 我来答
新科技17
2022-07-17 · TA获得超过5889个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:74.2万
展开全部
证明:由已知,AA' = E
所以 |E-A|=|AA'-A|
= |A(A'-E)|
= |A||A'-E|
= 1* |(A-E)'|
= |A-E|
= |-(E-A)|
= (-1)^n|E-A|
= - |E-A|.
故 |E-A| = 0.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式