如图,抛物线y=ax2+bx+c经过A(-3,0)、B(1,0)、C(0,-3)三点.

如图,抛物线y=ax2+bx+c经过A(-3,0)、B(1,0)、C(0,-3)三点.(1)求抛物线的解析式;(2)设抛物线的顶点为D,y轴上的点E坐标为(0,1),连接... 如图,抛物线y=ax2+bx+c经过A(-3,0)、B(1,0)、C(0,-3)三点. (1)求抛物线的解析式; (2)设抛物线的顶点为D,y轴上的点E坐标为(0,1),连接DC、EB.试探索抛物线上是否存在一点P,使△PDC和△PBE的面积相等,若存在,求出点P的坐标,并直接写出三角形面积的值,若不存在,说明理由. 展开
xhlhg
2012-12-09 · TA获得超过4558个赞
知道小有建树答主
回答量:415
采纳率:0%
帮助的人:401万
展开全部
1.设抛物线方程为y=a(x+3)(x-1),把C(0,-3)带入,得出a=1,所以抛物线方程为y=x^2+2x-3.
2.y=x^2+2x-3顶点坐标为D(-1,-4),易得CD解析式为y=x-3,EB解析式为y=-x+1,两直线交点为(2,-1),同时夹角为90°,所以其角平分线直线y=-1与抛物线的交点为所求的P。
当y=-1时,x^2+2x-3=-1,有x1=-1-√3,x2=-1+√3,
当P(-1-√3,-1)时,其到两边距离为(3√2+√6)/2,三角形面积为(3+√3)/2
当P(-1+√3,-1)时,其到两边距离为(3√2-6)/2,三角形面积为(3-3)/2。
流口水的奶牛
2012-12-09 · TA获得超过139个赞
知道答主
回答量:61
采纳率:0%
帮助的人:66.6万
展开全部
根据抛物线y=ax2+bx+c,将点C(0,3)代入原方程中得C等于-3
再将点B与点A代入院方称中得9a-3b+c=0 与a+b+c=0 将两个方程联立得a=b/2
计算得出a=1 b=2 c=-3 代入原方程y=ax2+bx+c的解析式y=x2+2x-3
追问
(2)设抛物线的顶点为D,y轴上的点E坐标为(0,1),连接DC、EB.试探索抛物线上是否存在一点P,使△PDC和△PBE的面积相等,若存在,求出点P的坐标,并直接写出三角形面积的值,若不存在,说明理由.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
果豪郭轩秀
2020-04-23 · TA获得超过3738个赞
知道大有可为答主
回答量:3130
采纳率:33%
帮助的人:203万
展开全部
解答:解:根据物线y=ax2+bx+c经过A(-1,0)、B(3,0),
设抛物线解析式为y=a(x+1)(x-3),
将C(0,3)代入得:3=-3a,即a=-1,
∴抛物线的解析式为y=-(x+1)(x-3)=-x2+2x+3,
则抛物线的顶点坐标为(1,4);对称轴为直线x=1;增减性为:当x<1时,y随x的增大而增大;当x>1时,y随x的增大而减小.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式