f(x)在[0,1]上连续并且在(0,1)上可导,且f(0)=f(1)=0,f(1/2)=1,证明存在ξ,使得f'(ξ)=1 我来答 1个回答 #热议# 为什么说不要把裤子提到肚脐眼? 天罗网17 2022-08-24 · TA获得超过6176个赞 知道小有建树答主 回答量:306 采纳率:100% 帮助的人:72.2万 我也去答题访问个人页 关注 展开全部 证明 令F(x)=f(x)-x, 则由条件知F(x)在[0,1]上连续,在(0,1)内可导,且F'(X)=f'(x)-1.另外闭区间上的连续函数一定有最大值和最小值,由F(0)=0,F(1/2)=1/2, F(1)=-1可知F(x)最大值一定在(0,1)的内部取得,即存在ξ属于(0,... 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: