二维随机变量的期望与方差公式是什么?
P(X/Y<0)=0.5
本题使用正态分布与独立性分析:
(x,y)~N(0,0,1,1,0)
说明X~N(0,1),Y~N(0,1)
且X与Y独立
X/Y<0,即X与Y反号
所以 P(X/Y<0)=P(X>0,Y<0)+P(X<0,Y>0)
=P(X>0)P(Y<0)+P(X<0)P(Y>0)
=0.5×0.5+0.5×0.5
=0.5
二维随机变量( X,Y)的性质不仅与X 、Y 有关,而且还依赖于这两个随机变量的相互关系。因此,逐个地来研究X或Y的性质是不够的,还需将(X,Y)作为一个整体来研究。
扩展资料:
在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。
随机事件数量化的好处是可以用数学分析的方法来研究随机现象。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。
在实际问题中通常用它来表征多个独立操作的随机试验结果或多种有独立来源的随机因素的概率特性,因此它对于概率统计的应用是十分重要的。
参考资料来源:百度百科——二维随机变量