函数的连续性和可导的关系是什么?

 我来答
与你最初12
高粉答主

2022-10-19 · 说的都是干货,快来关注
知道答主
回答量:69
采纳率:100%
帮助的人:1.3万
展开全部

关于函数的可导导数和连续的关系:

1、连续的函数不一定可导。

2、可导的函数是连续的函数。

3、越是高阶可导函数曲线越是光滑。

4、存在处处连续但处处不可导的函数。

左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在)。连续是函数的取值,可导是函数的变化率,当然可导是更高一个层次。

函数在某点可导的充要条件是左右导数相等且在该点连续。

显然,如果函数在区间内存在“折点”,(如f(x)=|x|的x=0点)则函数在该点不可导。

拓展资料:

因为函数在闭区间上连续要求左端点右连续、右端点左连续;而函数可导则要求函数在一点的左右导数均存在且相等,若为闭区间,则只能验证左端点是否有右导数,右端点是否有左导数,故函数在闭区间的端点处不可导。

可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处左右导数分别存在且相等,则称y在x=x[0]处可导。如果一个函数在x0处可导,那么它一定在x0处是连续函数。

如果函数y=f(x)在点x处可导,则函数y=f(x)在点X处连续,反之,函数y=f(x)在点x处连续,但函数y=f(x)处不一定可导。

参考资料:可导百度百科

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式