如何证明正弦定理a/sinA=b/sinB=c/sinC
1个回答
展开全部
正弦定理证明方法
方法1:用三角形外接圆
证明: 任意三角形ABC,作ABC的外接圆O.
作直径BD交⊙O于D. 连接DA.
因为直径所对的圆周角是直角,所以∠DAB=90度
因为同弧所对的圆周角相等,所以∠D等于∠C. 所以c/sinC=c/sinD=BD=2R
类似可证其余两个等式。
∴a/sinA=b/sinB=c/sinC=2R
方法2: 用直角三角形
证明:在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到a/sinA=b/sinB
同理,在△ABC中, b/sinB=c/sinC ∴a/sinA=b/sinB=c/sinC
在直角三角形中,在钝角三角形中(略)。
方法3:用向量
证明:记向量i ,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c ∴a+b+c=0 则i(a+b+c) =i·a+i·b+i·c
=a·cos(180-(C-90))+0+c·cos(90-A)=-asinC+csinA=0 ∴a/sinA =c/sinC (b与i垂直,i·b=0)
方法4:用三角形面积公式
证明:在△ABC中,设BC=a,AC=b,AB=c。作CD⊥AB垂足为点D,作BE⊥AC垂足为点E,则CD=a·sinB,BE= c sinA,由三角形面积公式得:AB·CD=AC·BE
即c·a·sinB= b·c sinA ∴a/sinA=b/sinB 同理可得b/sinB=c/sinC
∴a/sinA=b/sinB=c/sinC
方法1:用三角形外接圆
证明: 任意三角形ABC,作ABC的外接圆O.
作直径BD交⊙O于D. 连接DA.
因为直径所对的圆周角是直角,所以∠DAB=90度
因为同弧所对的圆周角相等,所以∠D等于∠C. 所以c/sinC=c/sinD=BD=2R
类似可证其余两个等式。
∴a/sinA=b/sinB=c/sinC=2R
方法2: 用直角三角形
证明:在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到a/sinA=b/sinB
同理,在△ABC中, b/sinB=c/sinC ∴a/sinA=b/sinB=c/sinC
在直角三角形中,在钝角三角形中(略)。
方法3:用向量
证明:记向量i ,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c ∴a+b+c=0 则i(a+b+c) =i·a+i·b+i·c
=a·cos(180-(C-90))+0+c·cos(90-A)=-asinC+csinA=0 ∴a/sinA =c/sinC (b与i垂直,i·b=0)
方法4:用三角形面积公式
证明:在△ABC中,设BC=a,AC=b,AB=c。作CD⊥AB垂足为点D,作BE⊥AC垂足为点E,则CD=a·sinB,BE= c sinA,由三角形面积公式得:AB·CD=AC·BE
即c·a·sinB= b·c sinA ∴a/sinA=b/sinB 同理可得b/sinB=c/sinC
∴a/sinA=b/sinB=c/sinC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询