已知公差不为0的等差数列﹛a﹜,其前n项和为Sn,S3=a4+6,且a1,a4,a13成等比数列。求数列﹛an﹜的通项公式
2个回答
展开全部
S3=3a1 + 3*(3-1)/2d=3a1+3d
a4=a1 + 3d
则 3a1 + 3d=a1 +3d+6 解得 a1=3
(a4)^2=a13 * a1 即 (3+3d)^2 = (3+12d)*3
解得 d=2 或 d=0(舍去)
所以 an = 3+2n Sn=3n+n(n-1)*2/2=n(n+2)
所以 1/Sn=1/(n(n+2))=(1/n-1/(n+2))*1/2
所以 Tn=1/S1+1/S2+1/S3+1/S4+。。。。。。+1/Sn
=1/2*(1-1/3)+1/2*(1/2-1/4)+1/2*(1/3-1/5)+1/2*(1/4-1/6)+。。。。。。+1/2*(1/n-1/(n+2))
=1/2*(1-1/3+1/2-1/4+1/3-1/5+1/4-1/6。。。。。。+1/n-1/(n+2))
=1/2*(1+1/2-1/(n+1)-1/(n+2))
=3/4-(2n+3)/(2(n+1)(n+2))
a4=a1 + 3d
则 3a1 + 3d=a1 +3d+6 解得 a1=3
(a4)^2=a13 * a1 即 (3+3d)^2 = (3+12d)*3
解得 d=2 或 d=0(舍去)
所以 an = 3+2n Sn=3n+n(n-1)*2/2=n(n+2)
所以 1/Sn=1/(n(n+2))=(1/n-1/(n+2))*1/2
所以 Tn=1/S1+1/S2+1/S3+1/S4+。。。。。。+1/Sn
=1/2*(1-1/3)+1/2*(1/2-1/4)+1/2*(1/3-1/5)+1/2*(1/4-1/6)+。。。。。。+1/2*(1/n-1/(n+2))
=1/2*(1-1/3+1/2-1/4+1/3-1/5+1/4-1/6。。。。。。+1/n-1/(n+2))
=1/2*(1+1/2-1/(n+1)-1/(n+2))
=3/4-(2n+3)/(2(n+1)(n+2))
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询