已知n阶方阵A满足2A(A-E)=A^3,证明E-A可逆,并求(E-A)^(-1)?

 我来答
抛下思念17
2022-10-13 · TA获得超过1.1万个赞
知道大有可为答主
回答量:6906
采纳率:99%
帮助的人:41.2万
展开全部
即 2A(A-E) -E = A³-E
2A(A-E) -E = (A-E)(A²+A+E)
有 (A-E)(A²-A+E ) =-E
有 (E-A)(A²-A+E )=E
所以E-A可逆,并求(E-A)^(-1) =A²-A+E,8,A^2-A+E
剩下的自己验算就知道了,2,已知n阶方阵A满足2A(A-E)=A^3,证明E-A可逆,并求(E-A)^(-1)
高手快来救救我吧··谢谢啦
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式