∫1/(1+√x+√(x+1))dx详细解答步骤,谢谢
3个回答
展开全部
分母有理化得:1/(1+√x+√(x+1))=(1/2)(1+√x-√(x+1))/√x
所以:
积分=(1/歼族2)∫[1+√x-√(x+1))/√源伍x]dx
=(1/2)(x+2√x)-(1/2)∫[√(x+1))/√x]dx
设√(x+1)/√x=t, (x+1)=xt^2, x=1/(t^2-1) dx=-2tdt/(t^2-1)^2
∫[√(x+1))/√x]dx=∫-2t^2dt/(t^2-1)^2
=(-1/2)(-2t/(t^2-1)+ln|(t-1)/(t+1)|+C
积分=(1/2)(x+2√x)+(1/4)(-2(√雹改或(x+1)/√x)/((x+1)/x-1)+ln|(√(x+1)/√x-1)/(√(x+1)/√x+1)|+C
=(1/2)[(x+2√x)+-√(x+1)√x+ln|(√(x+1)/√x-1)/(√(x+1)/√x+1)|+C
所以:
积分=(1/歼族2)∫[1+√x-√(x+1))/√源伍x]dx
=(1/2)(x+2√x)-(1/2)∫[√(x+1))/√x]dx
设√(x+1)/√x=t, (x+1)=xt^2, x=1/(t^2-1) dx=-2tdt/(t^2-1)^2
∫[√(x+1))/√x]dx=∫-2t^2dt/(t^2-1)^2
=(-1/2)(-2t/(t^2-1)+ln|(t-1)/(t+1)|+C
积分=(1/2)(x+2√x)+(1/4)(-2(√雹改或(x+1)/√x)/((x+1)/x-1)+ln|(√(x+1)/√x-1)/(√(x+1)/√x+1)|+C
=(1/2)[(x+2√x)+-√(x+1)√x+ln|(√(x+1)/√x-1)/(√(x+1)/√x+1)|+C
展开全部
∫{1/[1+√x+√(x+1)]}dx
=∫{[1+√x-√(x+1)]/[(1+√x)^2-(x+1)]}dx
=∫{[1+√x-√(x+1)]/(1+雹燃x+2√x-x-1)}dx
=(1/2)∫{[1+√x-√(x+1)]/√x}dx
=(1/2)∫(1/√x)dx+(1/2)∫dx-(1/2)∫[√(x-1)/√x]dx
=√x+(1/2)x-∫√(x-1)d(√x)
令√x=1/cosu,则:sinu=√(1-1/√x),d(√x)=[sinu/(cosu)^2]du。
∴∫{1/[1+√x+√(x+1)]}dx
=√x+(1/2)x-∫√[1/(cosu)肢肆宴^2-1][sinu/(cosu)^2]du
=√x+(1/2)x-∫(cosu/sinu)[sinu/(cosu)^2]du
=√x+(1/2)x-∫[1/(cosu)^2]d(sinu)
=√x+(1/2)x-(1/2)∫{(1-sinu+历银1+sinu)/[1-(sinu)^2]}d(sinu)
=√x+(1/2)x-(1/2)∫[1/(1+sinu)]d(sinu)-(1/2)∫[1/(1-sinu)]d(sinu)
=√x+(1/2)x-(1/2)ln(1+sinu)+(1/2)ln(1-sinu)+C
=√x+(1/2)x+(1/2)ln[1-√(1-1/√x)]-(1/2)ln[1+√(1-1/√x)]+C
=∫{[1+√x-√(x+1)]/[(1+√x)^2-(x+1)]}dx
=∫{[1+√x-√(x+1)]/(1+雹燃x+2√x-x-1)}dx
=(1/2)∫{[1+√x-√(x+1)]/√x}dx
=(1/2)∫(1/√x)dx+(1/2)∫dx-(1/2)∫[√(x-1)/√x]dx
=√x+(1/2)x-∫√(x-1)d(√x)
令√x=1/cosu,则:sinu=√(1-1/√x),d(√x)=[sinu/(cosu)^2]du。
∴∫{1/[1+√x+√(x+1)]}dx
=√x+(1/2)x-∫√[1/(cosu)肢肆宴^2-1][sinu/(cosu)^2]du
=√x+(1/2)x-∫(cosu/sinu)[sinu/(cosu)^2]du
=√x+(1/2)x-∫[1/(cosu)^2]d(sinu)
=√x+(1/2)x-(1/2)∫{(1-sinu+历银1+sinu)/[1-(sinu)^2]}d(sinu)
=√x+(1/2)x-(1/2)∫[1/(1+sinu)]d(sinu)-(1/2)∫[1/(1-sinu)]d(sinu)
=√x+(1/2)x-(1/2)ln(1+sinu)+(1/2)ln(1-sinu)+C
=√x+(1/2)x+(1/2)ln[1-√(1-1/√x)]-(1/2)ln[1+√(1-1/√x)]+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/(1+√x+√(x+1))=(1+√巧升x-√(x+1))/(( 1+√x)^2-(x+1)) =(1+√孝搭老x-√(x+1))/ 2√x
=1/ 2√x +1/2-√(x+1)/ 2√x
原式=1/2∫1/√x*dx+1/2∫dx-1/2∫√(x+1)/√x*dx
=√枝轿x +1/2*x-1/4* (2*x^2+2*x+√(x^2+x))*ln(1/2+x+√(x^2+x))/ √(x(x+1))+常数
=1/ 2√x +1/2-√(x+1)/ 2√x
原式=1/2∫1/√x*dx+1/2∫dx-1/2∫√(x+1)/√x*dx
=√枝轿x +1/2*x-1/4* (2*x^2+2*x+√(x^2+x))*ln(1/2+x+√(x^2+x))/ √(x(x+1))+常数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询