已知数列an满足a1+2a2+3a3+……+nan=2^n,求an?
1个回答
展开全部
a1+2a2+3a3+……+(n-1)a(n-1)+nan=2^n
a1+2a2+3a3+……+(n-1)a(n-1)=2^(n-1)
两式相减得
nan=2^n-2^(n-1)
nan=2^(n-1)
an=2^(n-1)/n,3,a1+2a2+3a3+……+(n-1)a(n-1)+nan=2^n
a1+2a2+3a3+……+(n-1)a(n-1)=2^(n-1)
两式相减得:
nan=2^n-2^(n-1),2,a1+2a2+3a3+……+nan=2^n
a1+2a2+3a3+……+n-1an-1=2^n-1
nan=2^n-2^n-1=2^n-1
an=[2^n-1]/n,0,
a1+2a2+3a3+……+(n-1)a(n-1)=2^(n-1)
两式相减得
nan=2^n-2^(n-1)
nan=2^(n-1)
an=2^(n-1)/n,3,a1+2a2+3a3+……+(n-1)a(n-1)+nan=2^n
a1+2a2+3a3+……+(n-1)a(n-1)=2^(n-1)
两式相减得:
nan=2^n-2^(n-1),2,a1+2a2+3a3+……+nan=2^n
a1+2a2+3a3+……+n-1an-1=2^n-1
nan=2^n-2^n-1=2^n-1
an=[2^n-1]/n,0,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询