请问这道数学题怎么解?

 我来答
pm971
2022-10-25 · TA获得超过4454个赞
知道大有可为答主
回答量:3251
采纳率:100%
帮助的人:424万
展开全部

作图如下:

以AC为边,在AC上方做正ΔACF,则有:AC=AF=CF,∠CAF=∠ACF=∠AFC=60°

做AC的中垂线(垂直平分线),下方交BC于E点,连接AE

因为AF=CF,所以点F也在AC的垂直平分线上。

题中给出:∠DAC=60°,∠ACD=40°,则可得:

∠ADC=80°,∠ADB=100°

因为E点在AC中垂线上,所以AE=CE

所以:∠EAC=∠ECA=40°

所以:∠AEC=100°,∠AED=80°

所以:ΔADE为等腰三角形

所以:AD=AE=CE

根据:

①、AD=AE=CE

②、BD=AC=AF=CF

③、∠ADB=∠EAF=∠ECF=100°

可得:ΔADB≌ΔEAF≌ΔECF(边角边)

即有:∠B=∠AFE=∠CFE

又:∠AFE+∠CFE=∠AFC=60°

所以:∠B=∠AFE=∠CFE=30°

lgzpw
活跃答主

2022-10-25 · 来这里与你纸上谈兵
知道大有可为答主
回答量:2万
采纳率:95%
帮助的人:1246万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
hbc3193034
2022-10-25 · TA获得超过10.5万个赞
知道大有可为答主
回答量:10.5万
采纳率:76%
帮助的人:1.4亿
展开全部
∠DAC=60°,∠ACD=40°,
所以∠ADC=80°,
设AC=BD=1,由正弦定理,
CD=sin60°/sin80°,
AD=sin40°/sin80°,
由余弦定理,AB^2=1+(sin40°/sin80°)^2+2sin40°/sin80°*cos80°,
cosB=(BA^2+BC^2-AC^2)/(2BA*BC)
=[(sin40°/sin80°)^2+2sin40°/sin80°*cos80°+(1+sin60°/sin80°)^2]/(2BA*BC)
≈0.866025404,
∠B=30°。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式