如何用洛必达法则求极限
1个回答
展开全部
设y=x^sinx
lny=sinx*lnx
=lnx/(1/sinx)
利用洛必达法则
=(1/x)/(-cosx/sin^x)
=-sin^x/xcosx
=2sinxcosx/(cosx-xsinx)
把x=0代入
=0
所以lny的极限是0
因此y趋于1
所以X的SINX次方的极限是1
lny=sinx*lnx
=lnx/(1/sinx)
利用洛必达法则
=(1/x)/(-cosx/sin^x)
=-sin^x/xcosx
=2sinxcosx/(cosx-xsinx)
把x=0代入
=0
所以lny的极限是0
因此y趋于1
所以X的SINX次方的极限是1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |