样本方差怎么计算?
1个回答
展开全部
一般情况下求D(S^2)并不容易,但如果总体服从正态分布N(μ,σ^2),则(n-1)S^2/σ^2服从自由度为n-1的卡方分布,从而D[(n-1)S^2/σ^2]=2(n-1),可由此间接求出D(S^2)。
在许多实际情况下,人口的真实差异事先是不知道的,必须以某种方式计算。 当处理非常大的人口时,不可能对人口中的每个物体进行计数,因此必须对人口样本进行计算。样本方差也可以应用于从该分布的样本的连续分布的方差的估计。
扩展资料:
如果大数定律的条件对于平方观测值同样适用,则s2是σ2的一致估计量。 可以看出,估计的方差趋于零。 在Kenney and Keeping(1951:164),Rose和Smith(2002:264)和Weisstein(n.d.)中给出了渐近等效的公式。
正态总体的样本均值和样本方差相互独立。方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差、方差越大,离散程度越大)
若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D(X)较大。
因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。
参考资料来源:百度百科——样本方差
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询