设limf(x)-f(a)/(x-a)(x-a)=1(x趋于a),则f(x)在x=a处取得最小值,为什么
展开全部
lim(x-a)=0,(x趋于a)
limf(x)-f(a)/(x-a)(x-a)=1(x趋于a)
lim[f(x)-f(a)]*(x-a)/(x-a)(x-a)=lim[f(x)-f(a)]/(x-a)=0(x趋于a)
即f'(a)=0,f(x)在x=a处取得极值
f(x)-f(a)=f'(k)(x-a) (L中值定理),带入
lim[f(x)-f(a)]/(x-a)(x-a)=lim[f'(k)]/(x-a)=lim[f'(k)-f'(a)]/(x-a)=1 x趋于a时,k趋于a,即lim[f'(x)-f'(a)]/(x-a)=1,f''(a)=1>0
即f(x)在x=a处取得最小值
limf(x)-f(a)/(x-a)(x-a)=1(x趋于a)
lim[f(x)-f(a)]*(x-a)/(x-a)(x-a)=lim[f(x)-f(a)]/(x-a)=0(x趋于a)
即f'(a)=0,f(x)在x=a处取得极值
f(x)-f(a)=f'(k)(x-a) (L中值定理),带入
lim[f(x)-f(a)]/(x-a)(x-a)=lim[f'(k)]/(x-a)=lim[f'(k)-f'(a)]/(x-a)=1 x趋于a时,k趋于a,即lim[f'(x)-f'(a)]/(x-a)=1,f''(a)=1>0
即f(x)在x=a处取得最小值
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询