如何求出一阶线性微分方程的通解?
1个回答
展开全部
第一步:求特征根
令ar+br+c=0,解得r1和r2两个值,(这里可以是复数,例如(βi)=-β)。
第二部:通解
1、若r1≠r2,则y=C1*e^(r1*x)+C2*e^(r2*x)。
2、若r1=r2,则y=(C1+C2x)*e^(r1*x)。
3、若r1,2=α±βi,则y=e^(αx)*(C1cosβx+C2sinβx)。
分类
一阶线性微分方程可分两类,一类是齐次形式的,它可以表示为y'+p(x)y=0,另一类就是非齐次形式的,它可以表示为y'+p(x)y=Q(x)。
齐次线性方程与非齐次方程比较一下对理解齐次与非齐次微分方程是有利的。对于非齐次微分方程的解来讲,类似于线性方程解的结构结论还是成立的。就是:非齐次微分方程的通解可以表示为齐次微分方程的通解加上一个非齐次方程的特解。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询