参数方程求面积的推导,这一步是怎么来的?
1个回答
2022-09-28 · 百度认证:北京惠企网络技术有限公司官方账号
关注
展开全部
A=(1/2)∮(xdy-ydx)这是格林公式求xoy平面上面积公式
若平面曲线是参数式
因x=x(t),y=(t),dx=x'dt,dy=y'dt
即可用x(t)和y(t)代替x和y
用x'dt代替dx,用y'dt代替dy
A=1/2∮[x(t)y'(t)-y(t)x']dt
平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数。
扩展资料:
圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标。
椭圆的参数方程 x=a cosθ y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数。
双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数。
抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数。
参考资料来源:百度百科-参数方程
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询