如图三角形ABC中cosB=√2/2,sinC=3/5,AC=5则三角形ACD的面积是
2个回答
展开全部
AC/sinB = AB/sinC
AB = sinC/sinB AC = 3sqrt(2)/2
面积=1/2 AB*AC sin A = 15sqrt(2)/4 * sin (pi - B-C)
sin A = sin(pi - B-C) = sin(B+C) = sinB cos C + cosB sinC = 1/sqrt(2) * 4/5 + 1/sqrt(2) * 3/5
= 7/(5sqrt(2))
面积=15sqrt(2)/4*7/(5sqrt(2)) = 21/4
AB = sinC/sinB AC = 3sqrt(2)/2
面积=1/2 AB*AC sin A = 15sqrt(2)/4 * sin (pi - B-C)
sin A = sin(pi - B-C) = sin(B+C) = sinB cos C + cosB sinC = 1/sqrt(2) * 4/5 + 1/sqrt(2) * 3/5
= 7/(5sqrt(2))
面积=15sqrt(2)/4*7/(5sqrt(2)) = 21/4
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |