sin(x)∧2的泰勒展开式

 我来答
我爱学习112
高粉答主

2022-09-23 · 每个回答都超有意思的
知道大有可为答主
回答量:7259
采纳率:100%
帮助的人:166万
展开全部

sin(x)∧2和(sinx)∧2在x=0的时候都等价于x²。

高等数学等价无穷小替换时,sinx~x,那么(sinx)^2可以替换为x^2(平方)。

当x→0时,sinx的泰勒展开式为sinx=x+o(x)

o(x)指的是x的高阶无穷小,所以当x→0时

可以(sinx)~x当x→0时(sinx)²=x²+o(x²)

所以当x→0时,可以(sinx)²~x²。

等价无穷小:

1、e^x-1~x (x→0)

2、 e^(x^2)-1~x^2 (x→0)

3、1-cosx~1/2x^2 (x→0)

4、1-cos(x^2)~1/2x^4 (x→0)

5、sinx~x (x→0)

6、tanx~x (x→0)

7、arcsinx~x (x→0)

8、arctanx~x (x→0)

9、1-cosx~1/2x^2 (x→0)

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式