奇数与偶数的定义是什么?
1个回答
展开全部
一.概念描述
现代数学:奇数亦称单数,是一类重要的数,即不能被2整除的整数。奇数常表示为2n+1或2n-1,其中n是整数。偶数亦称双数,是一类重要的数,即能被2整除的整数。偶数常表示为2n,其中n是整数。偶数的和、差、积都是偶数。
小学数学:2004年北京版教材第10册第51页提出:能被2整除的数叫作偶数;不能被2整除的数叫作奇数。2013年人教版教材五年级下册第12页提出:自然数中,是2的倍数的数叫作偶数(0也是偶数),不是2的倍数的数叫作奇数。
二.概念解读
在自然数中,不是奇数(又称单数),就是偶数(又称双数)。一般来说,偶数表示为2n;奇数表示为2n+1,n为整数。
自然数包括0。这样0也自然成为偶数。0是一个个特殊的偶数
小学规定0为最小的偶数,1是最小的奇数。但是在初中学习了负数,出现了负偶数时,0就不是最小的偶数了。像-2, -4, -6,-8,-10,-12等都是负偶数;出现了负奇数时,1也就不是最小的奇数了。像-1,-3,-5, -7,-9, -11等都是负奇数。
偶数包括正偶数、负偶数和0。奇数包括正奇数和负奇数。
在十进制里,可以用看个位数的方式判定该数是奇数还是偶数:个位为1、3、5.7、9的数是奇数;个位为0、2、4、6、8的数是偶数。
关于奇数和偶数有如下一些性质:
①两个连续整数中必有一个是奇数,一个是偶数。
②两个整数和的奇偶性---奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数。一般地,奇数个奇数的和是奇数,偶数个奇数的和是偶数,任意个偶数的和为偶数。
③两个整数差的奇偶性---奇数-奇数=偶数,奇数-偶数=奇数,偶数-偶数=偶数,偶数-奇数=奇数。
④两个整数积的奇偶性---奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。一般地,在整数连乘当中,只要有一个因数是偶数,那么其积必为偶数;如果所有因数都是奇数,那么其积必为奇数。
⑤两个整数商的奇偶性---在能整除的情况下,偶数除以奇数得偶数,偶数除以偶数可能得奇数,也可能得偶数,奇数不能被偶数整除。
⑥若a、b为整数,则a+b与a-b有相同的奇偶性。
⑦除2以外,所有的正偶数均为合数。
⑧相邻两个整数的和是奇数,相邻两个整数的积是偶数。
⑨如果一个整数有奇数个约数,那么这个数一定是完全平方数(像1、4、9、16、25等都是完全平方数)。如果一个数有偶数个约数,那么这个数一定不是完全平方数。
现代数学:奇数亦称单数,是一类重要的数,即不能被2整除的整数。奇数常表示为2n+1或2n-1,其中n是整数。偶数亦称双数,是一类重要的数,即能被2整除的整数。偶数常表示为2n,其中n是整数。偶数的和、差、积都是偶数。
小学数学:2004年北京版教材第10册第51页提出:能被2整除的数叫作偶数;不能被2整除的数叫作奇数。2013年人教版教材五年级下册第12页提出:自然数中,是2的倍数的数叫作偶数(0也是偶数),不是2的倍数的数叫作奇数。
二.概念解读
在自然数中,不是奇数(又称单数),就是偶数(又称双数)。一般来说,偶数表示为2n;奇数表示为2n+1,n为整数。
自然数包括0。这样0也自然成为偶数。0是一个个特殊的偶数
小学规定0为最小的偶数,1是最小的奇数。但是在初中学习了负数,出现了负偶数时,0就不是最小的偶数了。像-2, -4, -6,-8,-10,-12等都是负偶数;出现了负奇数时,1也就不是最小的奇数了。像-1,-3,-5, -7,-9, -11等都是负奇数。
偶数包括正偶数、负偶数和0。奇数包括正奇数和负奇数。
在十进制里,可以用看个位数的方式判定该数是奇数还是偶数:个位为1、3、5.7、9的数是奇数;个位为0、2、4、6、8的数是偶数。
关于奇数和偶数有如下一些性质:
①两个连续整数中必有一个是奇数,一个是偶数。
②两个整数和的奇偶性---奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数。一般地,奇数个奇数的和是奇数,偶数个奇数的和是偶数,任意个偶数的和为偶数。
③两个整数差的奇偶性---奇数-奇数=偶数,奇数-偶数=奇数,偶数-偶数=偶数,偶数-奇数=奇数。
④两个整数积的奇偶性---奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。一般地,在整数连乘当中,只要有一个因数是偶数,那么其积必为偶数;如果所有因数都是奇数,那么其积必为奇数。
⑤两个整数商的奇偶性---在能整除的情况下,偶数除以奇数得偶数,偶数除以偶数可能得奇数,也可能得偶数,奇数不能被偶数整除。
⑥若a、b为整数,则a+b与a-b有相同的奇偶性。
⑦除2以外,所有的正偶数均为合数。
⑧相邻两个整数的和是奇数,相邻两个整数的积是偶数。
⑨如果一个整数有奇数个约数,那么这个数一定是完全平方数(像1、4、9、16、25等都是完全平方数)。如果一个数有偶数个约数,那么这个数一定不是完全平方数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询