设随机变量x,y相互独立 都服从N(0,1) 计算概率P(X^2+Y^2<=1)
解:随机变量x,y相互独立 都服从N(0,1)
则f(x,y)=fX(x)fY(y)=1/(2π)e^(-x²-y²)
P(X^2+Y^2<=1)=∫∫f(x,y)dxdy
积分区域为X²+Y²<=1
使用极坐标
x=rcosθ,y=rsinθ
0<=r<=1
θ属于[0,2π)
∫∫f(x,y)dxdy=1/(2π)∫dθ∫ re^(-r²)dr=∫(0,1)re^(-r²)dr=1/2-1/(2e)
扩展资料
有些随机现象需要同时用多个随机变量来描述。例如对地面目标射击,弹着点的位置需要两个坐标才能确定,因此研究它要同时考虑两个随机变量,一般称同一概率空间(Ω,F,p)上的n个随机变量构成的n维向量X=(x,x,…,x)为n维随机向量。
随机变量可以看作一维随机向量。称n元x,x,…,x的函数为X的(联合)分布函数。又如果(x,x)为二维随机向量,则称x+ix(i=-1)为复随机变量。
随机变量的独立性
独立性是概率论所独有的一个重要概念。设x,x,…,xn是n个随机变量,如果对任何n个实数x,x,…,xn都有
即它们的联合分布函数F(x,x,…,x)等于它们各自的分布函数F(x),F(x),…,F(x)的乘积,即则称x,x,…,x是独立的。
则f(x,y)=fX(x)fY(y)=1/(2π)e^(-x²-y²)
P(X^2+Y^2<=1)=∫∫f(x,y)dxdy. 积分区域为X²+Y²<=1
使用极坐标
x=rcosθ,y=rsinθ
0<=r<=1
θ属于[0,2π)
∫∫f(x,y)dxdy=1/(2π)∫dθ∫ re^(-r²)dr=∫(0,1)re^(-r²)dr=1/2-1/(2e)
如有意见,欢迎讨论,共同学习;如有帮助,请选为满意回答!
请教一下,然后怎么算的概率P(X^2+Y^2<=1)?
然后就是查表了 答案是卡方1(2)
前面的答案中少了一个1/2导致答案错了