求lim(x→无穷)(1+2/x)^(x-2)的极限
3个回答
展开全部
这个是属于0^∞的类型求极限,必须先化成0/0或∞/∞的形式才能用洛必达法则算。
求lim(x→无穷)(1+2/x)^(x-2)=lim(x→无穷)(e^ln((1+2/x)^(x-2))=lim(x→无穷)(e^(x-2)ln((1+2/x))=lim(x→无穷)(e^(ln((1+2/x)/^(x-2))=e^lim(x→无穷)((ln((1+2/x)/^(x-2)))=e^lim(x→无穷)(((ln((1+2/x)'/(x-2)')=e^lim(x→无穷)((-2/x²)/1)=e^0=1
求lim(x→无穷)(1+2/x)^(x-2)=lim(x→无穷)(e^ln((1+2/x)^(x-2))=lim(x→无穷)(e^(x-2)ln((1+2/x))=lim(x→无穷)(e^(ln((1+2/x)/^(x-2))=e^lim(x→无穷)((ln((1+2/x)/^(x-2)))=e^lim(x→无穷)(((ln((1+2/x)'/(x-2)')=e^lim(x→无穷)((-2/x²)/1)=e^0=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询