无穷大是如何定义的?
1个回答
展开全部
上限无穷大的变限积分,不管上下限,先把原函数写出来,此时的原函数当变量取无穷大的时候就相当于是取极限为一个定值。
积分下限为a,下限是g(x) 那么对这个变上限积分函数求导, 就用g(x)代替f(t)中的t, 再乘以g(x)对x求导。
因为arctanx在-π/2到π/2之间波动,那么其平方值恒大于0,于是x趋于无穷大,通过不断累计,得,得到的是正无穷。
历史由来:
古希腊哲学家亚里士多德(Aristotle,公元前384-322)认为,无穷大可能是存在的,因为一个有限量是无限可分的,但是无限是不能达到的。
12世纪,印度出现了一位伟大的数学家布哈斯克拉(Bhaskara),他的概念比较接近理论化的概念。
将8水平置放成"∞"来表示"无穷大"符号是在英国人沃利斯(John Wallis,)的论文《算术的无穷大》(1655年出版)一书中首次使用的。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询