为什么要进行显著性检验?

 我来答
科普小星球
高粉答主

2023-01-27 · 看世间繁华,学科学道理。
科普小星球
采纳数:324 获赞数:136009

向TA提问 私信TA
展开全部

进行显著性检验的原因是为了进一步检测科学实验中实验组与对照组之间是否确实有非偶然因素导致的差异,消除第一类错误和第二类错误。

进行显著性检验,可以通过P值判断结果是否具有统计学意义,排除实验组与对照组的结果差异是有偶然或随机因素造成的,进一步确定是由于对实验做了特定处理引起的,从而消除 第一类错误和第二类错误。其中第一类和第二类错误是指:

1、通常情况下,α水平就是第一类错误。第一类错误是零假设为真却被错误拒绝的概率。

2、第二类错误是零假设为误却被错误接受的概率或是研究假设为真却被拒绝的概率。

扩展资料

显著性检验的基本思想可以用小概率原理来解释。

1、小概率原理:小概率事件在一次试验中是几乎不可能发生的,假若在一次试验中小概率事件事实上发生了。那只能认为该事件不是来自我们假设的总体,也就是认为我们对总体所做的假设不正正确。

2、观察到的显著水平:由样本资料计算出来的检验统计量观察值所截取的尾部面积。这个概率越小,反对原假设,认为观察到的差异表明真实的差异存在的证据便越强,观察到的差异便越加理由充分地表明真实差异存在。

3、检验所用的显著水平:针对具体问题的具体特点,事先规定这个检验标准。

4、在检验的操作中,把观察到的显著性水平与作为检验标准的显著水平标准比较,小于这个标准时,得到了拒绝原假设的证据,认为样本数据表明了真实差异存在。大于这个标准时,拒绝原假设的证据不足,认为样本数据不足以表明真实差异存在。

5、检验的操作可以用稍许简便一点的作法:根据所提出的显著水平查表得到相应的值,称作临界值,直接用检验统计量的观察值与临界值作比较,观察值落在临界值所划定的尾部内,便拒绝原假设;观察值落在临界值所划定的尾部之外,则认为拒绝原假设的证据不足。

参考资料来源:百度百科-显著性检验

SPSSAU
2023-07-18 · 百度认证:SPSSAU官方账号,优质教育领域创作者
SPSSAU
SPSSAU,也称"在线SPSS",一款网页版数据科学算法平台系统,提供"拖拽点一下"的极致体验和智能化分析结果。
向TA提问
展开全部

为什么要进行显著性检验?

在统计推断中,假设检验是用样本数据检验关于总体参数的某个结论,假设检验的方法虽然很多,但是这些方法的思想都大致一样,最常用的就是“小概率原理”的角度提出的显著性检验,也就是小概率事件在一次实验中基本不会发生,如果发生了,就会得出事件的发生并非偶然的证据。

(1)建立假设

一般先建立某个参数或想想的零假设(H0),要检验的结论一般称为零假设或者原假设,原假设一般是研究目标的对立结论,研究目标一般是研究者希望得到的结论,比如想要验证两种药物治疗某疾病是否显著,希望得到显著,则原假设就为两种药物治疗某疾病没有差异。

(2)检验

检验包括搜集数据和选择分析方法,一般通过实验或者随机抽样,搜集相关数据,选择分析方法进行实验。

(3)p值

检验p值,在此检验下得到p值,即在零假设的情况下得到一个p值,考虑p值对零假设的意义,得出拒绝或者不能拒绝零假设的结论。

一般在假设检验中,p值取值0~1之间,但是其实质表示的是改了吧,临界值由事先给定的显著性水平a相应的部分表得到的数值,如果最后p值<a则称为统计上是显著的,否则就被认为统计上不显著。

由于临界值是基于显著性水平查表得到的数值,而显著性水平a通常又是事先给定的,所以临界值是不随抽样数据变化而变化的,但是最后如果p值<a我们认为数据在水平a上是统计显著的。比如,a=0.01 ,我们认为,事先给定的数据极其不支持零假设H0,H0为真的概率不超过1%。如果P值小于0.01即说明某件事情的发生至少有99%的把握,如果P值小于0.05(并且大于0.01)则说明某件事情的发生至少有95%的把握。针对大部分分析,都需要通过显著性检验,说明分析具有统计学意义。

针对p值可以利用SPSSAU快速得到:

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式