2个回答
展开全部
你要给我点悬赏分!那么辛苦啊.
先计算∫dx/(x^2+4x+8)
=∫dx/[(x+2)^2+4]
=∫dx/4[(x/2+1)^2+1]
=(1/2)∫d(x/2+1)/[(x/2+1)^2+1]
=(1/2)arctan(x/2+1)+C
故∫(x+1)dx/(x^2+4x+8)
=∫[(2x+4)/2-1]dx/(x^2+4x+8)
=∫(2x+4)/2dx/(x^2+4x+8)-∫dx/(x^2+4x+8)
=∫1/2d(x^2+4x+8)/(x^2+4x+8)-∫dx/(x^2+4x+8)
=(1/2)ln(x^2+4x+8)-(1/2)arctan(x/2+1)+C
先计算∫dx/(x^2+4x+8)
=∫dx/[(x+2)^2+4]
=∫dx/4[(x/2+1)^2+1]
=(1/2)∫d(x/2+1)/[(x/2+1)^2+1]
=(1/2)arctan(x/2+1)+C
故∫(x+1)dx/(x^2+4x+8)
=∫[(2x+4)/2-1]dx/(x^2+4x+8)
=∫(2x+4)/2dx/(x^2+4x+8)-∫dx/(x^2+4x+8)
=∫1/2d(x^2+4x+8)/(x^2+4x+8)-∫dx/(x^2+4x+8)
=(1/2)ln(x^2+4x+8)-(1/2)arctan(x/2+1)+C
来自:求助得到的回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询