xe^xsinx的不定积分
∫xe^xsinxdx=[-xe^xcosx+(cosx*e^x+sinx*e^x)/2+xe^xsinx-(sinx*e^x-cosx*e^x)/2]/2+C
解题过程如下:
∫xe^xsinxdx
=-∫xe^xdcosx
=-xe^xcosx+∫cosxdxe^x
=-xe^xcosx+∫cosx(e^x+x*e^x)dx
=-xe^xcosx+∫cosx*e^xdx+∫cosx*x*e^xdx
∫cosx*e^xdx=∫cosxde^x=cosx*e^x-∫e^xdcosx
=cosx*e^x+∫sinx*e^xdx
=cosx*e^x+∫sinxde^x
=cosx*e^x+sinx*e^x-∫e^xdsinx
=cosx*e^x+sinx*e^x-∫cosxe^xdx
所以∫cosxe^xdx=(cosx*e^x+sinx*e^x)/2
∫cosx*x*e^xdx
=∫xe^xdsinx
=xe^xsinx-∫sinxdxe^x
=xe^xsinx-∫sinx(e^x+x*e^x)dx
=xe^xsinx-∫sinx*e^xdx-∫sin*x*e^xdx
∫sinx*e^xdx=(sinx*e^x-cosx*e^x)/2
所以∫xe^xsinxdx
=-xe^xcosx+(cosx*e^x+sinx*e^x)/2+xe^xsinx-(sinx*e^x-cosx*e^x)/2-∫xe^xsinxdx
所以∫xe^xsinxdx=[-xe^xcosx+(cosx*e^x+sinx*e^x)/2+xe^xsinx-(sinx*e^x-cosx*e^x)/2]/2+C
在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。
不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。
扩展资料
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
=-∫xe^xdcosx
=-xe^xcosx+∫cosxdxe^x
=-xe^xcosx+∫cosx(e^x+x*e^x)dx
=-xe^xcosx+∫cosx*e^xdx+∫cosx*x*e^xdx
∫cosx*e^xdx=∫cosxde^x=cosx*e^x-∫e^xdcosx
=cosx*e^x+∫sinx*e^xdx
=cosx*e^x+∫sinxde^x
=cosx*e^x+sinx*e^x-∫e^xdsinx
=cosx*e^x+sinx*e^x-∫cosxe^xdx
所以∫cosxe^xdx=(cosx*e^x+sinx*e^x)/2
∫cosx*x*e^xdx
=∫xe^xdsinx
=xe^xsinx-∫sinxdxe^x
=xe^xsinx-∫sinx(e^x+x*e^x)dx
=xe^xsinx-∫sinx*e^xdx-∫sin*x*e^xdx
同前方法
∫sinx*e^xdx=(sinx*e^x-cosx*e^x)/2
所以∫xe^xsinxdx
=-xe^xcosx+(cosx*e^x+sinx*e^x)/2+xe^xsinx-(sinx*e^x-cosx*e^x)/2-∫xe^xsinxdx
所以∫xe^xsinxdx=[-xe^xcosx+(cosx*e^x+sinx*e^x)/2+xe^xsinx-(sinx*e^x-cosx*e^x)/2]/2+C