利用拉氏变换解常微分方程的初值问题{y'-3y''+2y=e-t y(0)=0, y'(0)=1} -t为上标

zhanghongce
推荐于2016-12-01 · TA获得超过502个赞
知道小有建树答主
回答量:103
采纳率:0%
帮助的人:119万
展开全部
记Y(s) = L[ y(t) ]
则 L[ y'(t) ] = sY(s) - y(0) = sY(s)
L[ y''(t) ] = s^2*Y(s)-sy(0)-y'(0) = s^2*Y(s)-1
L[ e-t ] = 1/(s+1)
所以
有sY-3(s^2*Y-1) + 2Y = 1/(s+1)
得:Y(s) = 1/(s^2 - 1)
所以 Y(t) = sinh(t)

参考资料: 大脑

来自:求助得到的回答
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式