已知△ABC≌△ADE,BC的延长线交AD于点F,交AE的延长线于点G,若﹤ACB=110°,﹤ADE=30°,AC∥DE
2个回答
展开全部
因为AC∥DE,所以∠ADE=∠FAC=30°,
又因为△ABC≌△ADE,所以:∠DEA=∠ACB=110°,∠ADE=∠ABC=30°
∠BAC=∠DEA=180°-30°-110°=40°,
所以∠BAF=30°+40°=70°,
∠DFB是△AFB的外角,所以:∠ADF=∠BAF+∠ABC=70°+30°=100°
所以:在△AGB中,∠AGB=180°-30°-(40°+70°)=40°
又因为△ABC≌△ADE,所以:∠DEA=∠ACB=110°,∠ADE=∠ABC=30°
∠BAC=∠DEA=180°-30°-110°=40°,
所以∠BAF=30°+40°=70°,
∠DFB是△AFB的外角,所以:∠ADF=∠BAF+∠ABC=70°+30°=100°
所以:在△AGB中,∠AGB=180°-30°-(40°+70°)=40°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询