1个回答
展开全部
解:An/Bn=(7n+41)/(n+3)
=[n/2*(a1+an)]/[n/2*(b1+bn)]
=(a1+an)/(b1+bn)
=[2a1+(n-1)d1]/[2b1+(n-1)d2]
=[2a1/d2+(n-1)d1/d2]/[2b1/d2+n-1]
=[d1/d2*n+2a1/d2-d1/d2]/(n+2b1/d2-1)
故有d1/d2=7
2a1/d2-d1/d2=41
2b1/d2-1=3
也即d1=7d2
a1=24d2
b1=2d2
于是an/bn=[a1+(n-1)d1]/[b1+(n-1)d2]
=[24d2+7(n-1)d2]/[2d2+(n-1)d2]
=(7n+17)/(n+1)
=(7n+7+10)/(n+1)
=7+10/(n+1)
故当n=1时,an/bn=12;
当n=4时,an/bn=9;
当n=9时,an/bn=8
也即只有n=1,4,9时,an/bn才为正整数。
=[n/2*(a1+an)]/[n/2*(b1+bn)]
=(a1+an)/(b1+bn)
=[2a1+(n-1)d1]/[2b1+(n-1)d2]
=[2a1/d2+(n-1)d1/d2]/[2b1/d2+n-1]
=[d1/d2*n+2a1/d2-d1/d2]/(n+2b1/d2-1)
故有d1/d2=7
2a1/d2-d1/d2=41
2b1/d2-1=3
也即d1=7d2
a1=24d2
b1=2d2
于是an/bn=[a1+(n-1)d1]/[b1+(n-1)d2]
=[24d2+7(n-1)d2]/[2d2+(n-1)d2]
=(7n+17)/(n+1)
=(7n+7+10)/(n+1)
=7+10/(n+1)
故当n=1时,an/bn=12;
当n=4时,an/bn=9;
当n=9时,an/bn=8
也即只有n=1,4,9时,an/bn才为正整数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询