一个圆锥高为3倍根号3厘米,侧面展开图是半圆,求圆锥的侧面积(结果保留π)
展开全部
圆锥底面周长=侧面展开半圆的弧长
即 2πr=πL(r为底面半径,L为圆锥母线长)
则L=2r
L/r=2
2)根据勾股定理,(2r)平方-r平方=(3倍根号3)平方
得到 r=3
L=6
n=360×18π/36π=180°
3)故S侧=πrl=18π
即 2πr=πL(r为底面半径,L为圆锥母线长)
则L=2r
L/r=2
2)根据勾股定理,(2r)平方-r平方=(3倍根号3)平方
得到 r=3
L=6
n=360×18π/36π=180°
3)故S侧=πrl=18π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
侧面是半圆,母线l是底面半径r的两倍,所以l=6cm,r=3cm
S侧面积=πrl=18π平方厘米
S侧面积=πrl=18π平方厘米
追问
为什么母线l是底面半径r的两倍?可不可以将详细一点,谢谢!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询