设P(X0,Y0)是抛物线y^2=2px(p>0)上一定点,A,B是抛物线上两点,且PA垂直PB,求证:AB过点(2p+X0,-Y0) 20

匿名用户
2012-12-13
展开全部
设P(x0,y0)是抛物线y2=2px上一定点.A,B是抛物线上两点,且满足PA⊥PB,则AB过点(2p+x0,-y0).
证明设A(x1,y1),B(x2,y2)是抛物线上两点,
因为PA⊥PB,所以(x0-x1)(x0-x2)+(y0-y1)(y0-y2)=0,
即(y0^2-y1^2)(y0^2-y2^2)+4p(y0-y1)(y0-y2)=0
因为y0,y1,y2互不相等,所以(y0+y1)(y0+y2)=-4p,
y1y2=-4p-(y1+y2)y0-2px0.
(1)另一方面当x1≠x2,KAB=xy11--yx22=y12+py2,则AB所在直线方程为:y-y1=y12+py2(x-x1),化简并整理得:y=y12+pxy2+y1y1+y2y2,(2)(1)代(2)得:y=y11+y2(2px-4p-2px0)-y0,
此时直线AB恒过定点(2p+x0,-y0),
百度网友aa96858
2012-12-13 · TA获得超过8429个赞
知道大有可为答主
回答量:2888
采纳率:0%
帮助的人:2351万
展开全部
设AB的方程为x=ky+b,代入y^2=2px中,得,y^2+2pky-2pb=0
y1+y2=2pk,y1y2= -2pb
设A(x1,y1),B(x2,y2).PA⊥PB,kpa*kpb= -1
(y1-y0)/(x1-x0)*(y2-y0)/(x2-x0)= -1,(1)
代入,(1)x1=y1^2/2p,x0=y0^2/2p,x2=y0^2/2p得
(y1+y0)(y2+y0)= -4p^2
y1y2+(y1+y2)y0+y0^2+4p^2=0
-2pb+2pky0+2px0+4p^2=0
b=ky0+x0+2p
AB的方程为x=ky+b=ky+ky0+x0+2p=k(y+y0)+x0+2p
x=k(y+y0)+x0+2p
所以它一定经过(2p+X0,-Y0)
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式