菱形的性质与判定
菱形的性质与判定如下:
一、性质:
菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的对角线互相垂直平分且平分每一组对角;菱形是轴对称图形,对称轴有2条,即两条对角线所在直线;菱形是中心对称图形。
二、判定:
一组邻边相等的平行四边形是菱形;互相垂直的平行四边形是菱形;四条边均相等的四边形是菱形;对角线互相垂直平分的四边形;两条对角线分别平分每组对角的四边形;有一对角线平分一个内角的平行四边形。
三、菱形:
1、介绍:
菱形,又称等边四边形,是指在同一平面内,有一组邻边相等的平行四边形,也指四边都相等的四边形,由菱叶片的形状而得名。
菱形是中心对称图形,也是轴对称图形,对称轴有两条,即两条对角线所在直线,对角线互相垂直平分且平分每一组对角。
2、基本判定:
1、一组邻边相等的平行四边形是菱形。
2、四边相等的四边形是菱形。
3、对角线互相垂直且平分的四边形是菱形。
菱形的基本性质和结论:
一、基本性质:
1、对角线互相垂直且平分,并且每条对角线平分一组对角;
2、四条边都相等;
3、对角相等,邻角互补;
4、菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形,
5、在60°的菱形中,短对角线等于边长,长对角线是短对角线的√3倍。
6、菱形是特殊的平行四边形,它具备平行四边形的一切性质。
二、结论:
菱形的面积等于底乘以高,等于对角线乘积的一半。
菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。