如何用二重积分极坐标法算∫e^(- x^2) dxdy?
用二重积分极坐标法算∫e^(-x^2)dx,可以通过计算二重积分:∫∫e^(-x^2-y^2)dxdy。
那个D表示是由中心在原点,半径为a的圆周所围成的闭区域。
下面计算这个二重积分:
在极坐标系中,闭区域D可表示为:0≤r≤a,0≤θ≤2π 。
∴∫∫e^(-x^2-y^2)dxdy=∫∫e^(-r^2)*rdrdθ;
=∫[∫e^(-r^2)*rdr]dθ ;
=-(1/2)e^(-a^2)∫dθ ;
=π(1-e^(-a^2)) 。
下面计算∫e^(-x^2)dx ;
设D1={(x,y)|x^2+y^2≤R^2,x≥0,y≥0}。
D2={(x,y)|x^2+y^2≤2R^2,x≥0,y≥0}。
S={(x.y)|0≤x≤R,0≤y≤R}。
可以画出D1,D2,S的图。
显然D1包含于S包含于D2。由于e^(-x^2-y^2)>0,从而在这些闭区域上的二重积分之间有不等式:∫∫e^(-x^2-y^2)dxdy。
扩展资料:
二重积分与定积分关系含义:
二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
二重积分的值是被积函数和积分区域共同确定的。将上述二重积分化成两次定积分的计算,称之为:化二重积分为二次积分或累次积分。