决策树的构成要素不包括
决策树的构成要素不包括(B)
A.决策结点
B.决策枝
C.方案分支
D.状态结点
扩展资料:
分类决策树模型是一种描述对实例进行分类的树形结构。决策树由结点(node)和有向边(directed edge)组成。结点又分为内部结点(internal node)和叶结点(leaf node)。内部结点表示一个特征或属性,叶结点表示一个类。
决策树构成的基本要素包括:节点、分支、根节点、叶节点、特征、特征值、决策规则等。整个决策树由决策结点、方案分枝、状态结点、概率分枝和结果点五个要素构成。
决策树是一种基于树形结构来进行决策分析的模型。它通过将样本数据集分成许多小的子集,每个子集包含具有相似特征的数据点。
在每个子集中,决策树通过对特征进行判断和分析,以确定样本数据点的分类或预测结果。决策树是一种简单而有效的机器学习算法,它广泛应用于分类、回归和特征选择等领域。
决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。
在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy=系统的凌乱程度,使用算法ID3,C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。
概率枝:由状态节点引出的分支称为概率枝,概率枝的数目表示可能出现的自然状态数目。每个分枝上要注明该状态的内容和其出现的概率。
2024-12-03 广告