
微分方程怎么求通解?
1个回答
展开全部
微分方程求通解的方法:
1、△=p^2-4q>0,特征方程有两个相异实根λ1,λ2,通解的形式为y(x)=C1*e^(λ1*x)+C2*e^(λ2*x)。
2、△=p^2-4q=0,特征方程有重根,即λ1=λ2,通解为y(x)=(C1+C2*x)*e^(λ1*x)。
3、△=p^2-4q<0,特征方程具有共轭复根α+-(i*β),通解为y(x)=e^(α*x)*(C1*cosβx+C2*sinβx)。
微分方程的通解:
1、两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)
2、两根相等的实根:y=(C1+C2x)e^(r1x)
3、一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)
常用的微分算子法:
1、使用微分算子法求解二阶常系数非齐次线性微分方程的特解记忆较为方便,计算难度也可降低。引入微分算子d/dx=D,d^2/dx^2=D^2,则有 y'=dy/dx=Dy,y''=d^2y/dx^2=D^2y。
2、于是y''+p(x)y'+q(x)y=f(x)可化为(D^2+pD+q)y=f(x),令F(D)=D^2+pD+q,称为算子多项式,F(D)=D^2+pD+q即为F(D)y=f(x),其特解为y=f(x)/F(D)。
1、△=p^2-4q>0,特征方程有两个相异实根λ1,λ2,通解的形式为y(x)=C1*e^(λ1*x)+C2*e^(λ2*x)。
2、△=p^2-4q=0,特征方程有重根,即λ1=λ2,通解为y(x)=(C1+C2*x)*e^(λ1*x)。
3、△=p^2-4q<0,特征方程具有共轭复根α+-(i*β),通解为y(x)=e^(α*x)*(C1*cosβx+C2*sinβx)。
微分方程的通解:
1、两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)
2、两根相等的实根:y=(C1+C2x)e^(r1x)
3、一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)
常用的微分算子法:
1、使用微分算子法求解二阶常系数非齐次线性微分方程的特解记忆较为方便,计算难度也可降低。引入微分算子d/dx=D,d^2/dx^2=D^2,则有 y'=dy/dx=Dy,y''=d^2y/dx^2=D^2y。
2、于是y''+p(x)y'+q(x)y=f(x)可化为(D^2+pD+q)y=f(x),令F(D)=D^2+pD+q,称为算子多项式,F(D)=D^2+pD+q即为F(D)y=f(x),其特解为y=f(x)/F(D)。

2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询