如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是 BC 上的一个动点,过点P作BC的平行线交AB

上的一个动点,过点P作BC的平行线交AB的延长线于点D.(1)当点P在什么位置时,DP是⊙O的切线?请说明理由;(2)当DP为⊙O的切线时,求线段DP的长.... 上的一个动点,过点P作BC的平行线交AB的延长线于点D.
(1)当点P在什么位置时,DP是⊙O的切线?请说明理由;
(2)当DP为⊙O的切线时,求线段DP的长.
展开
 我来答
隔岸观火醉红尘
2013-01-07 · TA获得超过367个赞
知道答主
回答量:62
采纳率:0%
帮助的人:35.9万
展开全部
考点:

切线的判定;勾股定理;垂径定理;圆心角、弧、弦的关系;圆周角定理;相似三角形的判定与性质。
专题:
几何综合题。
分析:
(1)根据当点P是弧BC的中点时,得出弧PBA=弧PCA,得出PA是○O的直径,再利用DP∥BC,得出DP⊥PA,问题得证;
(2)利用切线的性质,由勾股定理得出半径长,进而得出△ABE∽△ADP,即可得出DP的长.
解答:
解:(1)当点P是弧BC的中点时,DP是⊙O的切线.理由如下:
∵AB=AC,
∴弧AB=弧AC,
又∵弧PB=弧PC,
∴弧PBA=弧PCA,
∴PA是○O的直径,
∵弧PB=弧PC,
∴∠1=∠2,
又AB=AC,
∴PA⊥BC,
又∵DP∥BC,
∴DP⊥PA,
∴DP是⊙O的切线.
(2)连接OB,设PA交BC于点E.
由垂径定理,得BE=BC=6,
在Rt△ABE中,由勾股定理,得:
AE=8,
设⊙O的半径为r,则OE=8﹣r,
在Rt△OBE中,由勾股定理,得:
r2=62+(8﹣r)2,
解得r=25/4,
∵DP∥BC,∴∠ABE=∠D,
又∵∠1=∠1,
∴△ABE∽△ADP,
∴6:DP=8;2×25/4,
解得:DP=75/8.
完满且随和丶比目鱼t
2013-04-08 · 贡献了超过113个回答
知道答主
回答量:113
采纳率:0%
帮助的人:14.5万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
cz1265467919
2013-01-21
知道答主
回答量:3
采纳率:0%
帮助的人:4783
展开全部
哇啊啊啊,这题害人不浅啊。。石景山区2012-2013学年第一学期期末考试试卷 初三数学 第23题就改了个问。。真懒啊。。
可怜的我们啊~~~~~~~~~~~~~~~~
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式