定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f
定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界。(1)证明:设M>...
定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界。(1)证明:设M>0,N>0,若f(x),g(x)在D上分别以M,N为上界。(2)求证:函数f(x)+g(x)在D上以M+N为上界。
展开
3个回答
展开全部
推荐答案1 小时前要证明函数f(x)+g(x)在D上以M+N为上界,那么就是证|f(x)+g(x)|≤M+N
而|f(x)+g(x)|≤|f(x)|+|g(x)|(三角不等式)≤M+N
所以函数f(x)+g(x)在D上以M+N为上界1|评论
而|f(x)+g(x)|≤|f(x)|+|g(x)|(三角不等式)≤M+N
所以函数f(x)+g(x)在D上以M+N为上界1|评论
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |