已知二次函数y=ax2+bx+c的图像与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正
已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-...
已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且A点坐标为(-6,0).
(1)求此二次函数的表达式;
(2)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(3)在(2)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由. 展开
(1)求此二次函数的表达式;
(2)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(3)在(2)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由. 展开
展开全部
解:(1)解方程x2-10x+16=0得x1=2,x2=8,
∵点B在x轴的正半轴上,点C在y轴的正半轴上,且OB<OC,
∴B、C三点的坐标分别是B(2,0)、C(0,8),
将A(-6,0)、B(2,0)、C(0,8)代入表达式y=ax2+bx+8,0=36a-6b+80=4a+2b+8解得a=-23b=-83
∴所求二次函数的表达式为y=-23x2-83x+8;
(2)∵AB=8,OC=8,依题意,AE=m,则BE=8-m,
∵OA=6,OC=8,∴AC=10.
∵EF∥AC,∴△BEF∽△BAC.
∴EFAC=BEAB.即EF10=8-m8.∴EF=40-5m4.
过点F作FG⊥AB,垂足为G,则sin∠FEG=sin∠CAB=45.
∴FGEF=45.∴FG=45•40-5m4=8-m.
∴S=S△BCE-S△BFE=12(8-m)×8-12(8-m)(8-m)=12(8-m)
(8-8+m)=12(8-m)m=-12m2+4m.
自变量m的取值范围是0<m<8.
(3)存在.理由如下:
∵S=-12m2+4m=-12(m-4)2+8,且-12<0,
∴当m=4时,S有最大值,S最大值=8.
∵m=4,∴点E的坐标为(-2,0)
∴△BCE为等腰三角形.
(其它正确方法参照给分)
∵点B在x轴的正半轴上,点C在y轴的正半轴上,且OB<OC,
∴B、C三点的坐标分别是B(2,0)、C(0,8),
将A(-6,0)、B(2,0)、C(0,8)代入表达式y=ax2+bx+8,0=36a-6b+80=4a+2b+8解得a=-23b=-83
∴所求二次函数的表达式为y=-23x2-83x+8;
(2)∵AB=8,OC=8,依题意,AE=m,则BE=8-m,
∵OA=6,OC=8,∴AC=10.
∵EF∥AC,∴△BEF∽△BAC.
∴EFAC=BEAB.即EF10=8-m8.∴EF=40-5m4.
过点F作FG⊥AB,垂足为G,则sin∠FEG=sin∠CAB=45.
∴FGEF=45.∴FG=45•40-5m4=8-m.
∴S=S△BCE-S△BFE=12(8-m)×8-12(8-m)(8-m)=12(8-m)
(8-8+m)=12(8-m)m=-12m2+4m.
自变量m的取值范围是0<m<8.
(3)存在.理由如下:
∵S=-12m2+4m=-12(m-4)2+8,且-12<0,
∴当m=4时,S有最大值,S最大值=8.
∵m=4,∴点E的坐标为(-2,0)
∴△BCE为等腰三角形.
(其它正确方法参照给分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询