如图,已知等边三角形ABC的边长为4厘米,长为1厘米的线段MN在在△ABC的边AB上沿AB方向以1cm/s的速度像B点 10
(运动开始时,点M与点A重合,点N到达B点时终止),过点M,N分别作AB边的垂线,与△ABC的其他边交于P,Q两点,线段M,N运动的时间为t秒(1)线段MN在运动的过程中...
(运动开始时,点M与点A重合,点N到达B点时终止),过点M,N分别作AB边的垂线,与△ABC的其他边交于P,Q两点,线段M,N运动的时间为t秒
(1)线段MN在运动的过程中,t为何值时,PM=NQ
(2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t,求四边形MNQP的面积S随运动时间t变化的函数关系式,并写出自变量t的取值范围 展开
(1)线段MN在运动的过程中,t为何值时,PM=NQ
(2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t,求四边形MNQP的面积S随运动时间t变化的函数关系式,并写出自变量t的取值范围 展开
3个回答
展开全部
解:(1)若PM=NQ
则AM=BN=(4-1)÷2=1.5,所以T=1.5
(2)因为AM=t,BN=4-t-1=3-t
S△ABC=4√3,
当0≤t≤1时,PM=√3 t,NQ=√3 (t+1),S=[√3 t+√3 (t+1)]×1/2=(2√3 t+1)/2;
当1<t≤2时,PM=√3 t,NQ=√3 (3-t),S=[√3 t+√3 (3-t)]×1/2=3√3 /2;
当2<t≤3时,PM=√3(4-t),NQ=√3 (3-t),
S=[√3(4-t)+√3 (3-t)]×1/2=(3√3 -2√3t)/2;
则AM=BN=(4-1)÷2=1.5,所以T=1.5
(2)因为AM=t,BN=4-t-1=3-t
S△ABC=4√3,
当0≤t≤1时,PM=√3 t,NQ=√3 (t+1),S=[√3 t+√3 (t+1)]×1/2=(2√3 t+1)/2;
当1<t≤2时,PM=√3 t,NQ=√3 (3-t),S=[√3 t+√3 (3-t)]×1/2=3√3 /2;
当2<t≤3时,PM=√3(4-t),NQ=√3 (3-t),
S=[√3(4-t)+√3 (3-t)]×1/2=(3√3 -2√3t)/2;
展开全部
解:(1)若PM=NQ
则AM=BN=(4-1)÷2=1.5,所以T=1.5
(2)因为AM=t,BN=4-t-1=3-t
S△ABC=4√3,
当0≤t≤1时,PM=√3 t,NQ=√3 (t+1),S=[√3 t+√3 (t+1)]×1/2=(2√3 t+1)/2;
当1<t≤2时,PM=√3 t,NQ=√3 (3-t),S=[√3 t+√3 (3-t)]×1/2=3√3 /2;
当2<t≤3时,PM=√3(4-t),NQ=√3 (3-t),
S=[√3(4-t)+√3 (3-t)]×1/2=(3√3 -2√3t)/2;
则AM=BN=(4-1)÷2=1.5,所以T=1.5
(2)因为AM=t,BN=4-t-1=3-t
S△ABC=4√3,
当0≤t≤1时,PM=√3 t,NQ=√3 (t+1),S=[√3 t+√3 (t+1)]×1/2=(2√3 t+1)/2;
当1<t≤2时,PM=√3 t,NQ=√3 (3-t),S=[√3 t+√3 (3-t)]×1/2=3√3 /2;
当2<t≤3时,PM=√3(4-t),NQ=√3 (3-t),
S=[√3(4-t)+√3 (3-t)]×1/2=(3√3 -2√3t)/2;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
当0≤t≤1时,PM=√3 t,NQ=√3 (t+1),S=[√3 t+√3 (t+1)]×1/2=(2√3 t+1)/2;
当1<t≤2时,PM=√3 t,NQ=√3 (3-t),S=[√3 t+√3 (3-t)]×1/2=3√3 /2;
当2<t≤3时,PM=√3(4-t),NQ=√3 (3-t),
S=[√3(4-t)+√3 (3-t)]×1/2=(3√3 -2√3t)/2;
当1<t≤2时,PM=√3 t,NQ=√3 (3-t),S=[√3 t+√3 (3-t)]×1/2=3√3 /2;
当2<t≤3时,PM=√3(4-t),NQ=√3 (3-t),
S=[√3(4-t)+√3 (3-t)]×1/2=(3√3 -2√3t)/2;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询