
2个回答
展开全部
解答:
y=cosx+cos(x-π/3)
=cosx+cosxcos(π/3)+sinxsin(π/3)
=(3/2)cosx+(√3/2)sinx
=√3* [cosx*(√3/2)+sinx*(1/2)]
=√3[cosxsin(π/3)+cosxsin(π/3)]
=√3sin(x+π/3)
所以函数y=cosx+cos(x-π/3)的最大值为√3
y=cosx+cos(x-π/3)
=cosx+cosxcos(π/3)+sinxsin(π/3)
=(3/2)cosx+(√3/2)sinx
=√3* [cosx*(√3/2)+sinx*(1/2)]
=√3[cosxsin(π/3)+cosxsin(π/3)]
=√3sin(x+π/3)
所以函数y=cosx+cos(x-π/3)的最大值为√3
展开全部
解
y=cosx+cos(x-π/3)
=2cos[(x+x-π/3)/2]·cos[(x-(x-π/3))/2]
=2cos(x-π/6)cosπ/6
=√3cos(x-π/6)
函数y=cosx+cos(x-π/3)的最大值为√3
(这是基于和差化积公式cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2] )
【数学辅导团】为您解答,
不理解请追问
理解请及时选为满意回答!(*^__^*)谢谢!
y=cosx+cos(x-π/3)
=2cos[(x+x-π/3)/2]·cos[(x-(x-π/3))/2]
=2cos(x-π/6)cosπ/6
=√3cos(x-π/6)
函数y=cosx+cos(x-π/3)的最大值为√3
(这是基于和差化积公式cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2] )
【数学辅导团】为您解答,
不理解请追问
理解请及时选为满意回答!(*^__^*)谢谢!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询