1个回答
展开全部
tan³α+1/tan³α
=(tanα+1/tanα)(tan²α-1 +1/tan²α)
=(tanα+1/tanα)[(tanα+1/tanα)² -3]
=(25/12)[(25/12)² -3]
=4825/1728
tanα+1/tanα=25/12
sinα/cosα+ cosα/sinα=25/12
(sin²α+cos²α)/(sinαcosα)=25/12
1/(sinαcosα)=25/12
sinαcosα=12/25
(sinα+cosα)²=sin²α+cos²α+2sinαcosα=1+2×(12/25)=49/25
sinα+cosα=7/5或sinα+cosα=-7/5
=(tanα+1/tanα)(tan²α-1 +1/tan²α)
=(tanα+1/tanα)[(tanα+1/tanα)² -3]
=(25/12)[(25/12)² -3]
=4825/1728
tanα+1/tanα=25/12
sinα/cosα+ cosα/sinα=25/12
(sin²α+cos²α)/(sinαcosα)=25/12
1/(sinαcosα)=25/12
sinαcosα=12/25
(sinα+cosα)²=sin²α+cos²α+2sinαcosα=1+2×(12/25)=49/25
sinα+cosα=7/5或sinα+cosα=-7/5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询