已知二次函数f(x)=ax²+bx+c(a,b,c∈R),f(-2)=f(0)=0,f(x)最小值为-1

(1)求函数解析式(2)设g(x)=f(-x)-af(x)+1,若g(x)在【-1,1】上是减函数,求实数a的范围... (1)求函数解析式
(2)设g(x)=f(-x)-af(x)+1,若g(x)在【-1,1】上是减函数,求实数a的范围
展开
anranlethe
2012-12-15 · TA获得超过8.6万个赞
知道大有可为答主
回答量:1.7万
采纳率:80%
帮助的人:2.2亿
展开全部
1、
f(-2)=f(0),则对称轴为x=-1;

又f(x)的最小值为-1,所以,顶点为(-1,-1)
所以,可设f(x)=a(x+1)²-1
f(0)=a-1=0,得:a=1
所以,f(x)=(x+1)²-1=x²+2x

2、
f(-x)=x²-2x
所以,g(x)=x²-2x-a(x²+2x)+1=(1-a)x²-2(a+1)x+1
(1)a=1时,g(x)=-4x+1,满足题意;
(2)a<1时,开口向上,对称轴为x=(a+1)/(1-a),要在【-1,1】上递减,则:
(a+1)/(1-a)≧1 因为a<1,所以,可直接同乘1-a;
a+1≧1-a
得:a≧0
所以,0≦a<1
(3)a>1时,开口向下,对称轴为x=(a+1)/(1-a),要在【-1,1】上递减,则:
(a+1)/(1-a)≦-1 因为a>1,所以,同乘1-a,变号
a+1≧a-1
得:a∈R
所以,a>1
综上,实数a的范围是:a≧0

祝你开心!希望能帮到你,如果不懂,请追问,祝学习进步!O(∩_∩)O
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式