满足sin(x+sinx)=cos(x-cosx)的锐角x=?
1个回答
展开全部
∵0<x<π/2,
∴ 0<sinx<1,0<cosx<1
∴0<x+sinx<1+π/2,-1<x-cosx<π/2
∴0<π/2-(x-cosx)<1+π/2
∵sin(x+sinx)=cos(x-cosx)=sin[π/2-(x-cosx)]
∴x+sinx=π/2-(x-cosx)或x+sinx+π/2-(x-cosx)=π
2x+sinx+cosx=π/2或sinx+cosx=π/2(舍)
结合图象可知 x约=0.2
∴ 0<sinx<1,0<cosx<1
∴0<x+sinx<1+π/2,-1<x-cosx<π/2
∴0<π/2-(x-cosx)<1+π/2
∵sin(x+sinx)=cos(x-cosx)=sin[π/2-(x-cosx)]
∴x+sinx=π/2-(x-cosx)或x+sinx+π/2-(x-cosx)=π
2x+sinx+cosx=π/2或sinx+cosx=π/2(舍)
结合图象可知 x约=0.2
追问
不好意思答案为兀/4
追答
∵0<x<π/2,
∴ 0<sinx<1,0<cosx<1
∴0<x+sinx<1+π/2,-1<x-cosx<π/2
∴0<π/2-(x-cosx)<1+π/2
∵sin(x+sinx)=cos(x-cosx)=sin[π/2-(x-cosx)]
∴x+sinx=π/2-(x-cosx)或x+sinx+π/2-(x-cosx)=π
2x+sinx-cosx=π/2或sinx+cosx=π/2(舍)
注意到函数f(x)=2x+sinx-cosx在(0,π/2)是增函数,且f(π/4)=π/2
所以,满足原方程的锐角是π/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询