
已知函数f(x)=4cossin(x+π/6)-1求函数单调递减区间
1个回答
展开全部
打丢了x
f(x)=4cosxsin(x+π/6)-1
=4cosx(sinxcosπ/6+cosxsinπ/6)-1
=4×√3/2sinxcosx+4×1/2×cos²x-1
=√3sin2x+cos2x
=2(√3/2sin2x+1/2cos2x)
=2sin(2x+π/6)
由2kπ+π/2≤2x+π/6≤2kπ+3π/2
得 kπ+π/6≤x≤kπ+2π/3,k∈Z
∴f(x)单调递减区间为 [kπ+π/6,kπ+2π/3],k∈Z
f(x)=4cosxsin(x+π/6)-1
=4cosx(sinxcosπ/6+cosxsinπ/6)-1
=4×√3/2sinxcosx+4×1/2×cos²x-1
=√3sin2x+cos2x
=2(√3/2sin2x+1/2cos2x)
=2sin(2x+π/6)
由2kπ+π/2≤2x+π/6≤2kπ+3π/2
得 kπ+π/6≤x≤kπ+2π/3,k∈Z
∴f(x)单调递减区间为 [kπ+π/6,kπ+2π/3],k∈Z
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询