1个回答
展开全部
解:(1)令u=arcsinx则x=sinu
则有:dx=cosudu
∴∫e^arcsinxdx=∫e^ucosudu
(采用分部积分法)
∴∫e^arcsinxdx=∫e^ucosudu=e^ucosu-∫e^ucosudu
∴∫e^arcsinxdx=cosue^u/2
将u=arcsinx代入即可
(2)(此题仍然采用分部积分法)
(uvw)'=uvw'+uv'w+u'vw
类似于两项相乘,你自己可以算一下,答案是:∫x * sinx * e^xdx=[xe^x(sinx-cosx)+e^xcosx]/2.仅供参考(*^__^*) ·······
则有:dx=cosudu
∴∫e^arcsinxdx=∫e^ucosudu
(采用分部积分法)
∴∫e^arcsinxdx=∫e^ucosudu=e^ucosu-∫e^ucosudu
∴∫e^arcsinxdx=cosue^u/2
将u=arcsinx代入即可
(2)(此题仍然采用分部积分法)
(uvw)'=uvw'+uv'w+u'vw
类似于两项相乘,你自己可以算一下,答案是:∫x * sinx * e^xdx=[xe^x(sinx-cosx)+e^xcosx]/2.仅供参考(*^__^*) ·······
来自:求助得到的回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询