求过两圆x2+y2-2x-2y-2=0和x2+y2-4x-4y=0的交点且面积最小的圆的方程是

wzhq777
高粉答主

2012-12-16 · 醉心答题,欢迎关注
知道顶级答主
回答量:11.1万
采纳率:95%
帮助的人:2.1亿
展开全部
解方程组:
x2+y2-2x-2y-2=0
x2+y2-4x-4y=0
得:X=(1+√7)/2,Y=(1-√7)/2,或X=(1-√7)/2,Y=(1+√7)/2,
∴两个交点:A([1+√7]/2,[1-√7]/2),B([1-√7]/2,[1+√7]/2),
AB^2=(√7)^2+(√7)^2=14
AB中点:(1/2,1/2),
最小圆就是以AB为直径的圆。
∴(X-1/2)^2+(Y-1/2)^2=7/2。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式