在锐角△ABC中,角A,B,C所对的边分别为a,b,c,已知sinA=2根号2/3.(1)求tan^2[(B+C)/2]+sin^2(A/2)
2个回答
展开全部
:sinA=2√2/3,因为是锐角三角形,所以cosA=1/3
tan²[(B+C)/2]+sin² (A/2)
=tan²(π-A)/2+sin²(A/2)
=cot²(A/2)+sin²(A/2)
=(cos²(A/2)/sin²(A/2)+sin²(A/2)
=[cos²(A/2)+sin²(A/2)×sin²(A/2)]/sin²(A/2)
=[cos²(A/2)+(1-cos²(A/2)×sin²(A/2)]/sin²(A/2)
=[cos²(A/2)+sin²(A/2)-cos²(A/2)×sin²(A/2)]/sin²(A/2)
=[1-(1/4)sin²A]/[(1-cosA)/2]
=[1-(1/4)2√2/3]/[(1-1/3)/2]
=(6-√2)/2
tan²[(B+C)/2]+sin² (A/2)
=tan²(π-A)/2+sin²(A/2)
=cot²(A/2)+sin²(A/2)
=(cos²(A/2)/sin²(A/2)+sin²(A/2)
=[cos²(A/2)+sin²(A/2)×sin²(A/2)]/sin²(A/2)
=[cos²(A/2)+(1-cos²(A/2)×sin²(A/2)]/sin²(A/2)
=[cos²(A/2)+sin²(A/2)-cos²(A/2)×sin²(A/2)]/sin²(A/2)
=[1-(1/4)sin²A]/[(1-cosA)/2]
=[1-(1/4)2√2/3]/[(1-1/3)/2]
=(6-√2)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询